Demonstration of the Surface Stabilized Combustor for Advanced Industrial Gas Turbines

Distributed Energy Resources Peer Review
December 2-4, 2003
Washington, DC

Neil K. McDougald

Project Goals

Develop a commercially viable low-emissions combustion system for industrial gas turbines.

- < 3-ppm NO_X (15% O_2)
- < 10-ppm CO $(15\% O_2)$
- < 10-ppm UHC $(15\% O_2)$
- 90 to 100% load operating range
 - Stretch goal 60 to 100% load operation
- 4% combustor pressure drop
 - Stretch goal 3% combustor pressure drop

Our Partners

US Department of Energy,
 Distributed Energy Resources

California Energy Commission,
 Public Interest Energy Research

Technology Approach

- Adapt successful CSB microSTAR™ technology to Gas Turbine service – nanoSTAR
- Lower NO_X emissions than aerodynamically stabilized lean premixed injector
- Enhanced lean stability
- Compatible with annular, can-annular and external can gas turbine combustors
- Single combustion zone
- No extraordinary control scheme

Technology

- Porous Surface is selectively perforated to achieve radiant and stabilized laminar blue flame regions
- Dry Low NO_X with high volumetric heat release
 - Surface Firing Rate of 1,000,000 Btu/hr-ft²-atmosphere
 - At 10:1 Pressure Ratio and 10,000 Btu/hr-kW Heat Rate
 Yields 1 Megawatt Per Square Foot of Surface

Technology

Porous Metal Fiber Pad

- Cast into 3-D Shape
- Sintered
- Selectively Perforated

Technical Development Path

Overview

Select Milestones

- ✓ Saturn Demonstration Completed 6/01
- ✓ Cast Taurus 60 Injector Completed 10/01
- ✓ Correct Poor Flow Distribution Completed 11/01
- ✓ In-house Casting Process Development Completed 2/02
- ✓ Mixer Concept Screening Tests Completed 2/02
- ✓ Single Injector Tests Completed, 8/02
- ✓ Multiple Injector, Sector Tests Completed, 11/02
- ✓ Multiple Zone Injector Tests Completed, 3/03
- ✓ Full Annular, Full-Scale Tests Completed, 10/03

700 °F / 12 atm Single Injector Testing

800 °F / 17 atm Single Injector Testing

Summary

- Low NO_X (down to 1 ppm @ 15% O₂) performance was demonstrated at full-load pressure and combustion air inlet temperatures.
- A broad range of Surface Firing Rates (0.6 1.7 MMBtu/hr-ft²-atm) were demonstrated at pressures up to 17 atmospheres.
- Developed design criteria for flow split between perforated and non-perforated regions
- Injectors technology ready to move forward with system development

Multiple Injector Tests "Sector Rig"

Objectives

- Demonstrate ability of injectors to operate in close proximity
- Characterize crossfire ignition of injectors at a variety of inlet temperatures and pressures
- Evaluate effect of injector separation distance on emissions performance
- Identify interactions between injectors

Sector Rig Hardware

Testing	# of ignitions	Pressures (atm)			
Day 3	5	1.3, 2.1, 3.6, 4.8, 6.5			
Day 4	8	2.2, 3.1, 4.2, 5.9, 6.8, 7.9, 8.9, 10.0			
Day 5	7	1.7, 2.2, 3.3, 3.4, 4.5, 6.9, 7.7			
Day 6	2	7.4, 9.6			

Pressurized Ignition

- Smooth and repeatable
- Injector separation did not affect ignition behavior
- No observable combustion dynamics or pressure oscillations for nominal and low SFR conditions
- Transient pressure oscillations observed during ignition at high SFR condition

Before

After

Injector number One before and after testing.

- Color change due to oxide formation
- No signs of aging
- No damage to metal fiber structure
- No evidence of over heating

NO_X Emissions for Both Injectors Fired

NO_X emissions compared with previous results

Sector Rig Summary

- Sustainable operation at injector separation required for application in an engine without combustor modification
- Successful pressurized ignition without combustion dynamics
- No detrimental interaction between injectors
- No accelerated aging
- Ultra-low NO_X emissions consistent with single injector tests
- Improved emissions performance under higher pressure and preheat operation

Full Scale Tests

Objectives

- Manufacture set of 12 burners and mixers
- Demonstrate ultra-low NO_x at simulated full load
- Demonstrate short-term hardware durability
- Demonstrate ignition characteristics
- Assess Pattern factor and temperature profile (atmospheric only)
- Identify and quantify any pressure oscillations
- Identify potential CO and HC combustor residence time issues

Full Scale Tests

Full Scale Tests Manufacturing

- Pre-production prototype manufacturing demonstrated
 - Injector head, internal distributor & mixer
 - 12 injectors (+ 2 spares) delivered for Full
 Scale Rig Testing
 - All parts within QC specifications

Full Scale Tests Manufacturing

nanoSTAR		CTC Injectors		Standard		Pass/ Fail
		Value	σ	Min	Max	
Pad Mass	gm	110.8	2.0	105	115	PASS
Surface Area	in ²	59.3	0.3	58.5	60	PASS
Flow Check						
Effective Area	in ²	1.144	0.006	1.135	1.155	PASS
DP/P		1.045	-	1.043	1.047	PASS

Full Scale Tests Hardware

Full Scale Tests Atmospheric Results

Full Scale Tests Atmospheric Results

Pattern Factor Testing

Full Scale Tests Atmospheric Results

Full Scale Tests Atmospheric Summary

- Atmospheric Test
 - Low pattern factor
 - Acceptable radial profile
 - Quick, reliable ignition
 - No measurable combustion dynamics
 - Duplication of single injector emissions performance tests

Full Scale Tests Pressure Facility

Full Scale Tests Pressurized Results

Full Scale Tests Pressurized Results

Full Scale Tests Pressurized Summary

- Pressurized Test CTC
 - Excellent Emissions, < 2 ppmNOx and < 5 ppm CO
 - Quick, reliable ignition
 - No measurable combustion dynamics
 - Duplication of single injector emissions performance tests
 - Injectors damaged by over temperature event (fuel control)

Conclusions

- Successfully completed project milestones and have moved the nanoSTAR technology from proof-ofconcept to full scale
- Injector technology has demonstrated low emissions (< 2 ppm NOx and < 5 ppm CO) performance at full scale
- Injector durability, system pressure drop, and ultimate life require further investigation
- Application of the technology to the Taurus 70 is planned for the next year with continued support from the California Energy Commission